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1. Summary
This paper concerns vertex connectivity in random graphs. We present
results bounding the cardinality of the biggest k-block in random graphs of
the Gn model, for any constant value of k. These results generalize
¢
those of [Erdos, Renyi, 60] and [Karp, Tarjan, 80] for k=1 and 2. We

furthermore prove here that the cardinality of the biggest k-block is 3 n-logn

with probability >1-nm2 for p# cl(k)/n any cl(k) >k+2. We also show

that if p3c(k) l9;?2 with c(k) >32k2 then the graph G o is k-connected
4 ’
. s -4' (k) ,
with probability #1-2n . d'(k) > 1.

2. Introduction

A graph G = (V,E) consists of a finite nonempty set V of vertices
together with a prercribed set E of unordered pairs of dictinct elements
of V (set of edges). ({(We allow no loops neither multiple edges).

The vertex connectivity k(G) of an undirected graph G is the minimum
nunber of vertices whose removal results in a disconnected graph or a
trivial graph (consistirg of just one vertex). Note that we follow here
[Matula, 78] in defining k-connectivity, which we find to be most natural.
[McLane, 37) gives a (somewha:t different) definition of triconnectivity so
that he can have the theorem that a graph is planar if its triconnected
components are. [MclLane, 37] shows that his triconnected components ére
homeomorphic to 3-blocks. Vertex k-connectivity seems to be a fundamental
property of a graph and ha. numerous applications to other graph problems
(such as planarity testing, routing problems etc). It is relevant to
questions concerning vulnerability of a graph to separation. Cluster

analysis methods considering the nature and inherent reliability of proximity
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data use the theory of k-connectivity to find groups of likes and dislikes
in object pair association graphs ([Matula, 77), [Matula, 78] also
[Jardine, Sibson, 71)).

A k-tlock of an urdirected graph G is a maximal k-connected sub-
graph. A k-block is trivial if it has only one vertex [Matula, 78). Clearly,
each k-block consists of >k vertices or it is trivial.

[Matula, 78] examined certain properties of k-blocks in graphs
(number of them, separation lemma) and [ardcs, Renyi, 60)] and [karo,
Tarjan, 89] examined the distribution of the size of the bigge : 1 and 2-
blocks in random graphs Gn,p with p 3.§- and Gn,N with N > en.
They proved that there is a giant k-block for k=1,2, with exponentially
decaying probability of error. For p > %.lQ%lL [Erdds, renyi 60]
showed that Gn p becomes almost surely 2-connected.

4

In our paper we examine k-connectivity in the model G , defined

’

precisely as follows: For 0 <p <1l and n > 0 let Gn be a random
- - - ’

variable whose values are graphs on the vertex set {1, 2, ..., n}. 1f

e = {u,v} and u,v,€{1, 2, ..., n} then Probfe is an edge} = p and

these probabilities are independent for different e.

We prove that for each constant k 2 0 and for each € (0 < € < 1)

and a> 1, there is a k-block of cardinality > en in Gn p with
- ’
p E_ELEL;ELJE with probability > 1 - ™', We furthermore prove that

for any k > 0 and 0 <m< %% there are constants c(k), d(k) > 0 such

that the size of the biggest k-block of G, p where p > c(k) lS%lL

’
equal to n-m with probability ﬁm.d(k). From that we get as corollaries,

that there are c(k), d(k) > 0 and d'(k) > 1 such that the size of

the biggest k-block of Gn iz > n-logn with prob > l—l?nlmd(k)lOgn

’

-]t
and that Gn p is k-connected with prcb > 1~--2nd (x).
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Finally, we prove that for any m =o (n) 3c1(k) > k42 and a function

cl(k) logn
t(n) > o such that, if p > t(n) then the biggest k-block
n
of G has size > n-m with probability > 1 - nk et(“)m -+ 1 as
n'p c (k)

n =, A corollary is that if p > then the biggest k-block of

-2
G p has cardinality > n - lognh with probability > 1l-n ~. These
n,

1
results were known by [Erdds, Renyi, 60] only for k=1 and c(l) > 5

3. Properties of k-blocks

PROPGSITION 1 [Matula, 78] For each k#0, any two k-blocks have no more

than k-1 vertices in common.

DEFINITION [Matula, 78] A separatior :2t S§ of G is a vertex
subset S = V(G) such that G - § is disconnected. A minimum separating

get S V(@) has |s] = k(@).

DEFINITION Let G be a graph (V,E) and let S &V be a set of vertices.

Then by <S> we denote the subgraph induced by § on G.

LEMMA 1 [Matuia, 78] (Block separation lemma) Iet S & V(G) be a
minimum separating set‘ of the noncomplete graph G with (Al>, <A2>. .
<Am>, m > 2 the components of G -<&S> and let k > k(G) + 1. fThen
each k-block of G is a k-block of <AiUs> for precisely one value of

i, and each k-~block of <A.1US> for every i 1is a k-block of G.
For a proof, see [Matula, 78].

REMARK [Matula, 78] shows that for each k > 1 the total number of
nontrivial k'-blocks for 1 < k' <k, is < l'ﬂ;_‘_l“ for any graph G

with n vertices.
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4, Giant k-blocks in Random Graphs
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In the following we introduce special notation for very large subgraphs.

T

For each €, 0 <€ <1, asubgraph H of agraph G of n vertices
is called an e-gtant of ¢ if the cardinality of the vertex set of H

is > en.

DEFINITION: Given a vertex set S <€V in the graph G = (V,g), the

boundary vertices of S is the set B(S) = {u€s| 3vev-s such that {u,vle E}.

DEFINITION: Let X be a random variable whose values are the cardinality

of the maximum k-block of instances of G . Let F (a) = Prob{X < a}
n,p n,p &k —

be the distribution function of X.

I. THEOREM 1: For every € on (0,1),a >1 and k > 0 there is a

~: c = clk,g,®) > 0 such that, for p > E, F (en) < Eom « In other words,
‘ —n n,p.k -
the random graph Gn p with p 3_;01_ has an €-giant k-block with probability

-an
at least 1 - a2 . To prove this theorem, we shall need the following

defirition and lemma.

DEFINITION: If G = (V,E) and A,B are subsets of V, then

E(a,B) = {e = {u,v}cE|u€A and vEB}.

LEMMA 2: For any O, el' €, >0 where €, + €

2 _<_1 and a

1 > 1 there

1 2
. c
are constants ¢, 83, €4 > 0 such that a random graph Gn,p with p >n
-oyn
has the property (*) with probability > 1 - e .

—

(*): If A,B are any two vertex subsets of V such that IAI _>_~_ lLE:an,

‘ Bl > le,n] wnd aNB =g then |E@.B)| >0,

PROOF OF LEMMA: The complement of (*) 1is: "“There are two vertex

1 subsets A,B such that IAI 2 Lel n_]. ‘ IBI > Lez nJ , ANB =g and

-
3 .-
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E(A,B) = g". Clearly

- €,NE N E,E,N
Prob{EM,B) =} < (1-p) 1 7 < (1= )T <30

—

1
Since there are at most 7" 4" ways to select these A,B, and upper

bound on the probability of the complement of (*) is

2 rrob{E(@,B) = g}
all A,B

n
~cf,€ _Otn
i%(qe 12) _<.el

for

Now we return to the proof of the Theorem 1. Let G = (V,E) be

an instance of the random graph Gn p* Let 81 be the event "G has no

€-giant k-block". Assume event c?l be true in the instance G of

G Let initially the set A = @. Dc the following construction just

n,p’
until A has cardinality > €' /2, where €' = min(g,l-€).

(a) Find a minimum separating set S of G. Let <A1>.... ' <Am>

m _>__:_2 be the components of G-S. Let <Ai> be the smallest of them.
let A+« (1\i U S)UA. Let B be the union of the rest of the components
and let G+ the graph induced by BUS. If [A| <€'+ 3, thenqo
to (a).

By the above method of constructing A, each addition of a component

in A adds at most k-1 vertices to B(A) (i.e. the verticec of the
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cut) and at least one vertex to A - B(A) (by the block separation lemma
and by the fact that k-blocks have > k vertices if they are non-trivial)
or causes the transformation of a boundary to a nonboundary vertex. Thus,
at least 1’k of the vertices of A are not in B(A).

By this construction, finally the k-blocks of G are going to be
separated, Because all k-blocks have been assumed to have cardinality

£ €n, we will finally have

e 7 <lal imin[c' S+en, e 2 %]
So
la - B(R)| il“.i.'%fﬂ .
and

v - al > n(l - min[(s + e'/2 ).(35'/4 )]

(obviously IV - AI >0 forany € on (0,1)). Let Y =2a - B(A) and

- - - =t
2=V =-a then |¥|>¢e;n and [2] > ¢, where €, = —-
\
€, = 1 - min [(e + -]2‘-4-:') , (38'/4)] and E(Y,2) = # by construction
Hence, there are disjoint sets Y'©€ Y and 2' €2 such that

|| = gy m, |2'] = €e,n and E(¥',2') = 9. Call & the above

event. We have just shown é‘l implies é‘z. So,

prob{é"l} < Prob{é",)} < a*n

by Lemma 2.




o+ 1oge4
NOTE: According to Lemma 2, any fxz_l and ¢ — satisfy
12
the theorem. Replacing el. €,y with the expressions found, we get
o+ 1oge4
c > 2k
a A (1 - min(c + -l—e' 3@:'))
' 2 4

5. k-blocks of dense random araphs.

This section considers ecie density p > ¢ lﬂ%lL .

THEOREM 2. For any constant integer k > 0 and any n and m < %%
there are constants c(k), d(k) > 0 such that the cardinality X of the

with p > c(k) lE%lL satisfies the

'

biggest k-block of the graph Gn p

property

Prob{X = n-m} < amd (k)

PROOF: Let G be an instance of Gn p and let the event X = n-m

14

be true in that instance. Let A be a k-block with |A| = X. For

every Uu€V-A, we have that
| |
l{u.v}GE(G) : vEAjl< k-1
(since, otherwise u would belong to A). ILet
A, = |vea : 3uev-a ¢ {u,v} €x@)]

then

la,| < &-1) |v-a| = x-Vm .




e s AL I

R RS A T

Let A2 = A - Al. We get

1a,| > n-m - (k-1)m

Furthermor.:, there is no edge from V-A to A

= n=-km

2.

Let & be the above event. The probability of

u(m,n) = n n-m) (1-P) {n=-km)m
m n -km

& is bounded above by

(¥**)
But (1-p) < (1 - £doan “) < ¢ logn
- n
since p > "l'._l_gﬂ
Also n-m < n-m )< e(k—l)m log(n-m)
n-km (x-Lym/ —
since (k=1)m < “—;ﬂ
and (n) < e\mlogn
m
since m<2
2
-d(npm)

Thus u(n,m) <n where d(n,m) =

log {n- m)

km
cm (l - T)— m - (k-l)m——io

v

> cm (l - -}Sln-)

> Sm o~ km

2

So, d(n,m) > mg(x) where
c(k) > 2k.
So, Prob(é) < nn d(k).

d(k) =

‘

n m - (k=-1)m

[S]¥e]

agn

(by our assumption).

- k. Note that d(k) > 0 isff

D T Iw T O ey
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THEOREM 3: For any constant integer k > 0 and any n >> k there is

a constant c(k) > 0 and a d(k) > ¢ such that the cardinality X of

the biggest k-block of the gfaph Gn p with p > c(k) 1—0%1—- satisfies
, -

the property
Prob{X < n - logn} < op (1-d(k)log n)

PROOF: By using theorem 2, we get

n/2k
f n | -md (k)
< - € e—( =
Prob lloqn_ n X 2k$ m=log n n
with at) =% x50 for coo > .
So, Prob -‘logn< n-X«< l} <n e r—llogn--d(k) <
| - 2k |

Also, by theorem 1 and using € = flk' we get

X n =-J'n

Prob}n X > '2?% < e

o + loge4 1
£ n ;> 1 d k) > = - = =
or any g and c(k) > - and €,6, ™ (1

172
o+ log 4\
So, for ck) > max(Zk, —— g
g.c
172
or c(k) > (a+ loge4)16k2
we get
Prob{logn < n - x} < son 1Z%—logn- d(k)

or

Prob{X < n - logn} < ap1-2(k) *logn

for sufficiently large n.

%-d (k)logn.

St b ke il h e e e 504
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Ly NOTE: Theorem 3 says thatl for p > c(k) lE%lL the graph Gn o has a k-
%g block of siZe > n-log n with nprobability limiting to 1 as n-.
hy
’ THEOREM 4: For any constant integer k > 0 and n >> k there are constants
c(k) > 0, (k) > 1 such that the random graph G,  with p > c(k) fodn
ot r
;; is k-connected with probability
i -a
i > 1@
g
: PROOF: Let R=n - X where X = cardinality of the biggest k-block of .
o+log 4
G_ . By using theorems 2, 3 and c(k) > 2 + max([2k, ———E——] with
n,p E1€2
1 3
- -2 +
6182 3 (l 8k> we get that
)
L 1-E - k)
Prob{l < R} < %Py 2 .
Let d'(k)=°——(2—-k)—k-1.
. o+ log 4
Then d'(k) > 1 for c(k) > 2 +{max 2k, ————
€. €
172
and

Prob{l < R} < gorn ;@ (k) ,=dt (k)

. for large n.
¢
o Hence
»
{

prob{rR = 0} > 1 - 2nd &)

4
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6. k-blocks for intermediate edge densities,

Let %ﬁi p<c' lQ%lL . We wish to study the k-connectivity of this

class of random graphs.

THEOREM 5- For any constant k > 0 and any m = o(n) there is a constant
c, (k o4 1

cl(k) > 0 and a function t(n)> o such that, if p > —

then if X is the cardinality of the biggest k-block of Gn p then

’

prob{x <n-~- m} < n +0 as n > oo ,

-'et(n) m

PROOF: Assume that in the instance G of Gn,p the cardinality X of
the biggest k-block satisfies the inequality X < n - m. Then, we can find
two sets Y, 2 (as in proof of theorem 3) such that lYl = m, |Z| =n - km
and no edge between them. This event is above bounded by the probability
1 - g where

q = Prob{for every pair of disjoint sets Y,Z of

vertices of the above sizes, there is at least

one edge between Y, zZ.}

We shall show g+ 1 as n =+ ©, Let us enumerate all possible pairs of

sets of vertices of the above sizes. Call them

(Yllzl)l Yzlzz)l « o e (Ygrzg)

n) n-m

where g = m, n - km
n\ /n-m
m (k~1) m

We have that q =
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Prob{E(Y,,2,) # # A ..., AE(Y,2Z ) ¥ g}

where E(Y,2) = set of edges between Y,Z.

So, by Baye's formula, q =
A _ E(Y .2 ) # 2
ElY,,2,) #- 8 g g
‘ ( 2 2) : } ++« Prob ( )

fialit ! 1l e
ot e 5 ot s e D s i,

- prob {E(Y.,2,) # §} . Prob .
: 1 ! A .
] 1 By 7 9 e[ 7
F:l .
L We need the following enumeration lemma:

LEMMA 3: For every two sets Yi'zi having at least one edge e between :
[ them, there are at least ;

4

n- 2 ne-2-= (m-1)
9 "\m-1/\tk - I)m=~1

m, n ~ km which also have this edge between them.

pairs of sets of sizes

é
This lemma can be proved easily by taking out the two vertices of e and j
enumerating. ?
COROLLARY: There is a suitable enumeration of the sets in the q product ﬁ

such that for every term i not equal to 1 the next g1 or more

URE R

terms (conditioned on the existence of an edge from Ai to Bi) will be

equal to 1. .
iy

Hence, the value of q is

q/q1
q > Prob{E(Yl,Zl) # ¢}]

But

g/g1 < (%)k as n >
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Hence, é

X 4

: ke ](n/m) !

q> [1~- (1—p)m(" km)] %

o (n/m* 3

L /. e pm(“—km)] o

EN LI (PT 5 )

X

or (&) ;

"

a2 1- ;pm(n-km))

il 3

X 1

> 1 - ([» ét(n)m ;

el n i

oY ! fi

=
S . if cl(k) >k + 2, ?
; - ‘ (Since tin)m > ¢; (k) logn > (k+2) logn) ;
SO' N

Prob{X < n - m} < ;[t(n)m - klogn] 0 as n -+

for the above values of ¢ (k)

ot ettt s il b i s s ey

COROLLARY: For m = logn and t(n) 3_cl(k) >k + 2 we get: For each

o with p> %1 k) as a k-block of cardinality
. >

n
>n ~ logn with probability 21- n-z.

k > 0, the graph Gn

4
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